Holy Cross College (Autonomous), Nagercoil Accredited with A⁺⁺ by NAAC - V cycle – CGPA 3.53 Nagercoil, Kanyakumari District, Tamil Nadu. Affiliated to Manonmaniam Sundaranar University, Tirunelveli #### DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE SYLLABUS FOR UNDERGRADUATE PROGRAMME TEACHING PLAN ODD SEMESTER 2025-2026 #### DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE #### Vision To establish a centre of excellence in Artificial Intelligence and Data Science that promotes innovation, sustainability, and social transformation by developing professionals and leaders with strong ethical values to tackle global issues for a balanced and sustainable future. #### Mission To provide quality education through the use of advanced tools, promote a culture of collaboration, and encourage customer-oriented innovations that bridge academia and industry, making a significant contribution to societal improvement. ### **Programme Educational Objectives (PEOs)** | PEOs | Upon completion of B.A/B.Sc. degree programme, the graduates will be able to | Mission addressed | |-------|--|-------------------| | PEO 1 | apply appropriate theory and scientific knowledge to participate in activities that support humanity and economic development nationally and globally, developing as leaders in their fields of expertise. | M1 & M2 | | PEO 2 | inculcate practical knowledge for developing professional empowerment and entrepreneurship and societal services. | M2, M3, M4 & M5 | | PEO 3 | pursue lifelong learning and continuous improvement of the knowledge and skills with the highest professional and ethical standards. | M3, M4, M5 & M6 | # **Programme Outcomes (POs)** | POs | Upon completion of B.Sc. Degree Programme, the | PEOs | |------|--|------------------| | | graduates will be able to: | addressed | | PO 1 | obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science. | PEO 1 | | PO 2 | create innovative ideas to enhance entrepreneurial skills for economic independence. | PEO 2 | | PO 3 | reflect upon green initiatives and take responsible steps to build a sustainable environment. | PEO 2 | | PO 4 | enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career. | PEO 1 & PEO 3 | | PO 5 | communicate effectively and collaborate successfully with peers to become competent professionals. | PEO 2 &
PEO 3 | | PO 6 | absorb ethical, moral and social values in personal and social life leading to highly cultured and civilized personality | PEO 2 &
PEO 3 | | PO 7 | participate in learning activities throughout life, through self-paced and self-directed learning to develop knowledge and skills. | PEO 1 & PEO 3 | # **Programme Specific Outcomes (PSOs)** | PSOs | Upon completion of the B.Sc Artificial Intelligence and Data | Mapping | | | | | | | | | | |---------|--|----------|--|--|--|--|--|--|--|--|--| | | Science, the graduates will be able to: | with POs | | | | | | | | | | | PSO – 1 | evolve AI and Data Science based domain knowledge and skills to | PO 1 | | | | | | | | | | | | pursue advanced studies in the field and integrate these techniques with | | | | | | | | | | | | | emerging technologies. | | | | | | | | | | | | PSO - 2 | develop innovative ideas in AI and data science to enhance | PO 2 | | | | | | | | | | | | entrepreneurial and employability skills for real-world challenges. | | | | | | | | | | | | PSO – 3 | cultivate versatile skills for problem-solving, technical proficiency, | | | | | | | | | | | | | cultivate versatile skills for problem-solving, technical proficiency, effective communication, and community engagement through self- | | | | | | | | | | | | | directed activities. | | | | | | | | | | | | PSO - 4 | communicate and collaborate proficiently to become competent AI | PO 5 & | | | | | | | | | | | | professionals, while addressing biases, and upholding data privacy | PO 6 | | | | | | | | | | | | regulations. | | | | | | | | | | | | PSO - 5 | reflect on green initiatives and leverage AI to address economic | PO 3 | | | | | | | | | | | | challenges while promoting sustainable development. | | | | | | | | | | | Department : Artificial Intelligence and Data Science Class : I B. Sc Artificial Intelligence and Data Science Title of the Course : Core Course I : Programming for Problem Solving Semester : I Course Code : IU241CC1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | | Marks | | |-------------|---|---|---|---|---------|-------------|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | IU241CC1 | 4 | 1 | - | - | 5 | 5 | 75 | 25 | 75 | 100 | #### **Objectives** - 1. To recognize the importance of programming languages, recall memory management and identify bugs in C programs. - 2. To apply problem-solving techniques, implement memory-efficient modularization and develop C programs with varied data types. | CO | Upon completion of this course, the students will be able to: | Cognitive level | |----|---|-----------------| | 1. | remember the fundamentals of C programming and describe the program development process. | K1&K2 | | 2. | prepare solutions for problems using branching and looping statements. | К3 | | 3. | decompose a problem into functions and synthesize a complete program using divide and conquer approach. | К3 | | 4. | formulate algorithms and programs using arrays, pointers and structures | К3 | | 5. | analyze various programming constructs and structures. | K4 | K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyze # Teaching plan Total Contact hours: 75 (Including lectures, assignments and tests) | Unit | Module | Topic | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student
Centric
Methods | E Resources | Assessment/
Evaluation
Methods | |------|-----------|---|-------------------|---------------------|-----------------|--|---|------------------------------------|--| | I | Introduct | ion To Computing | | | | | | | | | | 1. | Introduction - Art of
Programming
through Algorithms
and Flowcharts. | 2 | | K1(R) | Introductory session Flow Chart Creation sessions for real-world applications. | Inquiry-Based
Learning,
Algorithm
Sketching | Video
Lectures,
Notes/Slides | Word Cloud
on
Algorithms,
CIA I | | | 2. | Overview of C: History and importance of C- Basic structure of C program | 2 | 1 | K1(R) | Lecture using
Chalk and talk | Software
Demonstration
Gamified Quiz | Interactive PPT | Quiz using
Slido, CIA I | | | 3. | Executing a C program. Constants, Variables and Data Types | 2 | | K2(U) | Concept
Explanations | Concept-based discussion, Problem-solving sessions using real-world applications. | Turbo C
Compiler | Slip Test on
Datatypes,
CIA I | | | 4. | Character Set- C
Tokens | 2 | | K2(U) | Interactive PPT | Mind
mapping-
Infographics | Interactive PPT | Quiz using
Slido, CIA I | | | 5. | Declaration of
Variables-
Assigning Values to
Variables | 2 | 1 | K2(U) | Syntax
Explanations | Peer Code
Review | Turbo C
Compiler | Exercises using variables, CIA I | | | 6. | Defining Symbolic Constants. Managing Input and Output Operations | | 1 1 | | Demonstration
,
Code
Walkthrough | Syntax based learning | PPT & Turbo
C Compiler | Write the syntax for I/O operations, CIA I | |----|-----------|---|---|-----|-----------------|---|--------------------------------------|---------------------------|---| | | 7. | Operators and Expressions. | 1 | | K2(U),
K3(A) | Logical
Thinking | Think-Pair-
Share
Mind Mapping | Interactive PPT | Problem solving questions, CIA I | | II | Control S | Structures | | | | | | _ | _ | | | 1. | Decision Making
and Branching:
Introduction | 2 | | K1(R) | Lecture using Chalk and talk | Scenario
Based
Learning | Classpoint
PPT | Evaluation
through short
test, CIA I | | | 2. | Decision Making
with IF Statement-
Simple IF
Statement- IF-ELSE
Statement | 2 | 1 | K2(U) | Lecture with examples | Bug Hunt
Activities | Turbo C,
Notes | List some
applications
of decision-
making ideas,
CIA I | | | 3. | Nesting of IF-ELSE
Statements- ELSE IF
Ladder | 2 | 1 | K2(U) | Lecture using videos | Case based
Learning | Turbo C,
Notes | Write the syntax and semantics for nested if else, CIA I | | | 4. | Switch statement-
The Conditional
Operator- goto
statement | 2 | 1 | K3(A) | Syntax
Explanations
with examples | Code
Completion
Activities | Interactive ppt | Create a program using conditional operator, CIA I | | | 5. | Decision Making
and Looping:
Introduction- while
Statement- do
statement- for | 2 | | K3(A) | Syntax
Explanations | Code
Completion
Activities | PPT | Create programs using loops, CIA I | | | | statement | | | | | |
 | |-----|-----------|--|----|---|--------|--|-----------------------------------|-----------------------------------|---| | | 6. | Nested control
structures- break
statement- continue
statement. | 2 | | K2(U) | Syntax
Explanations | Code Tracing
Exercises | Classpoint | Debug the given snippets, CIA | | III | Arrays an | nd Strings | | | | 1 | | | | | | 1. | Defining an array | 1 | | K2(U) | PPT | Concept Based
Learning | PPT using
Nearpod | Slip Test,
CIA I | | | 2. | Processing an array -
Multidimensional
arrays | 3 | 1 | K1(R) | Syntax
Explanations | Concept Based
Learning | PPT | Create programs using arrays, CIA I | | | 3. | Searching algorithm - Linear search | 3 | | K4(An) | Flipped
Classroom | Scenario
Based
Learning | Presentations
using
NearPod | Practice
Exercises,
CIA I | | | 4. | Sorting algorithm -
Bubble sort
algorithm | 3 | 1 | K4(An) | Lecture using videos, Code Tracing | Project Based
Learning | PPT Using
Gamma | Practice
Exercises,
CIA II | | | 5. | Strings - Defining a
string - Initialization
of strings- Reading
and writing a string | 2 | | K3(A) | Blended
Learning | Code Puzzle
Solving | Interactive PPT | MCQ Using
Nearpod,
CIA II | | | 6. | Processing the strings | 2 | 1 | K3(A) | Syntax
Explanations,
Visual
Simulations | Project Based
Learning | Classpoint
PPT | Create programs using string manipulation functions, CIA II | | IV | | Functions and Pointe | rs | | | | | | _ | | | 1. | Functions-
Overview- Defining
a function | 2 | 1 | K2(U) | Constructivist
Learning | Concept Mapping, Code Development | Self-made
Videos, PPT | Short
summary,
CIA II | | | 2. | Accessing a function-Function | 2 | | K3(A) | Contextual
Learning | Live Coding
Practice | Self-made
Videos, PPT | Create a snippet using | | | | prototypes | | | | | | | function, CIA | |---|-----------|--|---|---|--------|---|--|----------------------------------|--| | | 3. | Passing arguments to
a function- Passing
arrays to functions | 2 | | K3(A) | Computational Learning | Error Spotting
Exercises | Classpoint
PPT | Evaluation
through short
test, CIA II | | | 4. | Recursion | 2 | 1 | K4(An) | PPT,
Programming
Demo | Pair
Programming
Trace
Worksheets | PPT | Find the factorial of a given number using recursion, CIA II | | | 5. | Pointers: Introduction- Declaring Pointer Variables- Initialization of Pointer variables | 2 | 1 | K3(A) | Guided
Discovery,
Hands-on Lab
Sessions | Real Life
Analogies,
Debugging
Sessions | Interactive
PPT, Notes | Exercises to
create
programs
using
pointers, CIA
II | | | 6. | Accessing a Variable through its Pointers-Dynamic memory allocation | 2 | | K4(An) | Analytical
Study | Mini Projects | Self-made
videos | Evaluation
through short
test, CIA II | | V | Structure | es and File Management | - | l | | 1 | 1 | 1 | | | | 1. | Defining a structure-
Declaring structure
variables | 2 | 1 | K1(R) | Case-Based
Teaching,
Experiential
Learning | Real Life
Modeling,
Coding with a
twist | Classpoint
PPT | True/False
Assessment,
CIA II | | | 2. | Accessing structure
members- Array of
structures | 2 | 2 | | Contextual
Learning | Code
Debugging
Activity | PPT | Evaluation
through
exercises,
CIA II | | | 3. | Structures and pointers | 2 | 1 | K3(A) | Live Debugging, Error Spotting Activities | Pointer
Matching
Puzzles | Online
Tutorials and
Notes | Evaluation
through short
test, CIA II | | | 4. | File Management in | 2 | | K4(An) | Syntax | Code | Interactive | MCQ, CIA II | | | C: Introduction | | | | Explanations | Refactoring | PPT | | |----|-------------------|---|---|-------|------------------|-------------|-----------|---------------| | | | | | | | Challenge | | | | 5. | Defining and | | | | Experiential | Employee | YouTube | Develop a | | | opening a file- | 2 | | K3(A) | Learning | Database | Lecture | simple file | | | closing a file | ∠ | 1 | KS(A) | | Simulation | Videos | program, | | | | | | | | | | CIA II | | 6. | Input/output and | | | | Interactive ppt, | Debugging | PPT Using | Quiz Using | | | Error Handling on | 2 | | K2(U) | Analogical | | Nearpod | Slido, CIA II | | | Files. | | | | Pedagogy | | | | Activities (Em/En/SD): 1. Implement basic C Programs using loops. 2. Text Processing Exercises Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Professional Ethics Activities related to Cross Cutting Issues: Nil Assignment: 1. Recursion 2. Bubble Sort Algorithm (Last Date for Submission: 12-08-2025) Seminar Topic: Linear Search #### Sample questions (minimum one question from each unit) #### Part A (1 Mark) | 1. | | refers to | the names of variab | les, functions | s and arra | ys. | |----|--------|--------------|----------------------|----------------|------------|------------------| | 2. | 'switc | h' is a mul | ti-way branching sta | tement. Say | True or F | alse. | | 3. | Seque | nce of char | acters is called as | | | | | | a. | a) array | b) string | c) nibble | d) wor | ·d | | 4. | Recur | sion is a pr | ocess in which a fur | nction calls_ | | | | | а | a) itself | h) another function | n c) main | function | d) None of these | - 5. Select a function which is used to read a single character from a file at a time? - a) fscanf() - b) getch() - c) fgetc() - d) fgets() #### Part B (6 Marks) - 6. Write an algorithm and develop a C program that reads N integer numbers and arrange them in ascending order using selection Sort. - 7. Explain formatted input and output statement with examples. - 8. Write a C program using functions to generate the Fibonacci series. - 9. What is the difference between the function malloc () and calloc ()? - 10. How do we declare a file in a C program? Explain the opening modes of file. #### Part C (12 Marks) - 11. What is a token? What are the different types of tokens available in C? Explain. - 12. Explain the different types of loops in C with syntax. - 13. Explain with example the following string functions. - i. (i) strlen() - (ii) strcpy() - ii. (iii) strcat() - (iv) strcmp() - iii. (v) strstr - 14. What is a pointer? Explain how the pointer variable declared and initialized. - 15. Elaborate File Management Concepts in C. Dr. S. Immaculate Shyla Head of the Department Dr. S. Immaculate Shyla Course Instructor Department : Artificial Intelligence and Data Science Class : I B. Sc Artificial Intelligence and Data Science Title of the Course : Core Lab Course I: Problem Solving Using C Lab Semester I Course Code : IU241CP1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | | Marks | | |-------------|---|---|---|---|---------|-------------|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | IU241CP1 | - | 1 | 4 | - | 5 | 5 | 75 | 25 | 75 | 100 | #### **Objectives** - 1. To develop proficiency in fundamental programming concepts and structures using C. - 2. To apply advanced programming techniques to solve complex problems. | СО | Upon completion of this course, the students will be able to: | Cognitive level | |----|---|-----------------| | 1. | translate given algorithms to a working and correct program. | K2&K3 | | 2. | identify and correct logical errors encountered at run time. | K2&K3 | | 3. | create iterative as well as recursive programs. | K6 | | 4. | represent data in arrays, strings and structures and manipulate them through a program. | K2&K3 | | 5. | declare pointers of different types and use them in defining self-referential structures. | K2&K3 | **K2** - Understand; **K3**- Apply; **K6** - Create Teaching plan Total Contact hours: 75 (Including lectures, assignments and tests) | Unit | Торіс | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student
Centric
Methods | E Resources | Assessment/
Evaluation
Methods | |------|--|-------------------|---------------------|-----------------|----------------------------------|-------------------------------|---|--------------------------------------| | 1 | Implementation of Basic C programs. | 6 | | K2(U) | Case based
Learning | Software Demonstration | Turbo C
Compiler | Performance | | 2 | Simple computational problems using arithmetic expressions and operators. | 6 | 7 | K2(U) | Lecture using
Chalk and talk | Syntax based learning | Interactive
PPT, Turbo C
Compiler | Observation | | 3 | Problem solving using branching and logical expressions. | 6 | | K2(U) | Concept
Explanations | Code Tracing | Turbo C
Compiler | Viva voce | | 4 | Iterative problems using Loops, while and for loops. | 8 | | K3(A) | Demonstration | Peer Code
Review | Turbo C
Compiler | Identify and fix bugs | | 5 | Implementation of linear searching, bubble sort, and Matrix Manipulation using Arrays. | 8 | 8 | K3(A) | Visualization | Peer Code
Review | Turbo C
Compiler | Short Coding snippets | | 6 | Implementation of Text Processing using Strings. | 6 | 8 | K3(A) | Demonstration & Code Walkthrough | Syntax based learning | PPT & Turbo
C Compiler | Performance | | 7 | Find roots of a quadratic equation using
functions and recursion. | 6 | K2(U),K3
(A) | Logical
Thinking | Think-Pair-
Share | PPT & Turbo
C Compiler | Model test | |---|---|---|-----------------|---------------------|-------------------------------|---------------------------|-------------------------------------| | 8 | Implementation of basic file operations. | 6 | K6(C) | Demonstration | Scenario
Based
Learning | Turbo C
Compiler | Evaluation through short exercises. | Activities (Em/En/SD): 1. Implement basic C Programs for patterns using loops. 2. Text Processing Exercises 3. Mini Projects Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil Activities related to Cross Cutting Issues: Nil Assignment: 1. Recursion- Exercises 2. Bubble Sort Algorithm (Last Date for Submission: (14-08-2025) #### Sample questions - 1. Create a simple calculator application. - 2. Develop a two-player game using arrays and simple logic. - 3. Implement a system to add, delete, and display student records using structures and file I/O. - 4. Keep track of stock items, quantities, and prices using structures and files. - 5. Create a Sudoku puzzle solver using backtracking. Dr. S. Immaculate Shyla Head of the Department Dr. S. Immaculate Shyla Course Instructor Department : Artificial Intelligence and Data Science Class : I B.Sc. Artificial Intelligence and Data Science Title of the Course : Elective Course I: Mathematical Foundations for Artificial Intelligence Course Code : IU241EC1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total Hours | | Marks | | |-------------|---|---|---|---|---------|-------------|-------------|-----|----------|-------| | | | | | | | | | CIA | External | Total | | IU241EC1 | 3 | 1 | - | - | 4 | 3 | 60 | 25 | 75 | 100 | #### **Learning Objectives:** - 1. To utilize logical connectives to form and evaluate complex logical statements. - 2. To apply basic Boolean algebra laws to simplify logical expressions. - 3. To solve linear systems using the Gauss Elimination Method. | | On the successful completion of the course, students will be able to: | | |----|---|---------| | 1. | understand the basics of computers and the number conversions | K1 & K2 | | 2. | analyse and evaluate logical arguments and statements using formal logical principles. | K4 & K5 | | 3. | acquire knowledge of lattice structures and Boolean algebra, including the application of Boolean | K2 & K3 | | | algebra laws and the principle of duality to solve logical problems. | | | 4. | understand the basic concepts of set theory and relations including inclusion-exclusion principles, | K2 & K3 | | | types of relations and demonstrate the ability to apply these concepts in problem-solving. | | | 5. | To learn various methods to solve algebraic and transcendental equations. | K1 & K2 | # Teaching plan Total Contact hours: 60 (Including lectures, assignments and tests) | Unit | Mod
ule | Торіс | Teaching
Hours | Assessme
nt Hours | Cognitive level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|------------|---|-------------------|----------------------|-------------------|---|-------------------------------|--|---| | I | INTR | ODUCTION TO PROGRA | MMING | | 1 | | l | I. | 1 | | | 1 | Introduction to Computers - Computer characteristics - Hardware vs software | 2 | | K1 (R),
K2 (U) | Lecturing using interactive PPT, Blended Learning | Think-Pair-
Share | Interactive PPT, Notes | Word cloud,
Google Forms | | | 2 | Types of Computers-
System Software and
Application Software | 3 | 1 | K2(U) | Flipped
Classroom | In-class
discussions | You tube
videos,
Interactive PPT,
Notes | Formative Quiz
using Quizizz,
Short answer
type class test | | | 3 | Types of programming languages | 1 | | K3(Ap) | Lecturing using interactive PPT, Blended Learning | In-class
discussions | Interactive PPT,
Notes | Oral Questions,
Quiz | | | 4 | Number Systems and
Base Conversions | 3 | 1 | K1 (R),
K2 (U) | Blended
Learning,
Problem-based
learning | Collaborative problem solving | You tube
videos,
Interactive PPT,
Notes | Conceptual Questions, Problem- solving worksheets | | | 5 | 1's and 2's complement of a Binary Number- | 3 | 1 | K1 (R), | Blended
Learning,
Problem-based | Collaborative problem solving | You tube videos, Interactive PPT, | Problem solving assignments, Oral Questions, | | | | Binary Coded Decimal | | | K2 (U) | learning | | Notes | CIA I | |---|------|--|---|---|-------------------|----------------------------|---|------------------------------|--| | П | PROI | POSITIONAL LOGIC IN AI | [| | | | | | | | | 1 | Statement (Propositions) – Laws of Formal Logic | 2 | | K1 (R),
K2 (U) | Lecture with demonstration | Concept based discussion | PPT using
Gamma | Oral Questions,
CIA I | | | 2 | Basic Set of Logical Operators / Operations – Conjunction – Disjunction – Negation – Prepositions and Truth Tables | 3 | 1 | K4 (An) | Blended
Learning | Explaining concepts, answering questions from peers | Video Lectures,
Quizizz | Quiz via
Quizizz, CIA I | | | 3 | Connectives – Compound Propositions – Conditional Statement – Converse, Contrapositive and Inverse – Biconditional Statement | 3 | 1 | K4 (An) | Inquiry-based learning | Formulating questions and in class discussions to answer the questions | YouTube
videos, e notes | Problem Solving Assignments, CIA I | | | 4 | Algebra of Propositions— Propositional Functions— Tautologies and Contradictions | 2 | 1 | K4 (An) | Active
Learning | Peer Instruction,
Co-operative
activities
involving pairs
and small
groups | E notes, Google
classroom | Quiz through
Google
classroom, CIA | | | 5 | System Specifications— Principle of Substitution | 2 | | K4(An) | Lecturing | Small group
activities | E notes | Problem solving assignments, CIA I | | III | LATT | TICES THEORY AND BOO | DLEAN ALGI | EBRA | | | | | | |-----|-------|--|------------|------|-------------------|----------------------------|---|---|--| | | 1 | Introduction- Definition
(Partially Ordered Set-
Poset) | 1 | | K1 (R),
K2 (U) | Lecture with examples | Concept based discussion | Online course materials | Short test with
MCQs, CIA II | | | 2 | Lattice, Hasse Diagram | 2 | 1 | K1 (R),
K2 (U) | Blended
Learning | Co-operative activities involving pairs and small groups | E notes | Oral questions,
CIA II | | | 3 | Distributive Lattice-
Complemented Lattice- | 2 | 1 | K1 (R),
K2 (U) | Lecture with demonstration | Group tasks on
'Analysing and
checking
whether the
given lattice is
distributive,
complemented' | Referring mathematical concepts through websites like Byju, GeeksforGeeks | Quick Quizes
for checking
understanding
of concepts,
CIA II | | | 4 | Definition of Boolean
Algebra- Basic Boolean
Algebra Laws- | 3 | | K1 (R),
K2 (U) | Active
Learning | Brainstorming,
Think-Pair-
Share | PPT using
Gamma | Slip test, CIA II | | | 5 | Definition (Principle of Duality). | 4 | - 1 | K1 (R),
K2 (U) | Lecture with illustration | In-class
discussions | Interactive PPT | Conceptual
Questions, CIA
II | | IV | SET T | THEORY AND RELATION | NS | | | | | | | | | 1 | Introduction- Set-Finite
Set-Cardinality - | 2 | 1 | K1 (R),
K2 (U) | Inquiry-Based
Learning | Think-Pair-
Share | YouTube videos | Concept check
polls during
class, Problem
Solving
assignments, | | | | | | | | | | | CIA II | |---|------|--|---------|---|--------------------|--|---|--|---| | | 2 | Operations on Sets-
Union- Intersection-
Disjoint Sets- Difference
Set-Complement Set | 2 | | K1 (R),
K2 (U) | Lecture with illustration, Brainstorming | In-class
discussions | Referring
mathematical
concepts
through
websites like
GeeksforGeeks | Quiz through
Google
classroom, CIA
II | | | 3 | Principle of Inclusion and
Exclusion - Ordered Pair -
Binary Relation- | 3 | | K2 (U) | Inquiry-Based
Learning | Think-Pair-
Share | Online course materials | Conceptual
quiz, CIA II | | | 4 | Types of Relations-
Symmetric Relation-Anti-
Symmetric Relation-
Reflexive Relation-
Transitive Relation | 3 | 1 | K4 (An) | Blended
Learning | Explaining concepts, answering questions from peers | You Tube
videos | Short answer
type class test,
Written
assignment;
problems
solving, CIA II | | | 5 | Equivalence Relation-
Partially Ordering
Relation | 2 | 1 | K3 (Ap) |
Active
Learning | Peer Instruction | PPT using
Gamma | Slip test, CIA II | | V | BASI | C NUMERICAL METHODS | S IN AI | | | | I | I | _L | | | 1 | Solution of Algebraic and
Transcendental Equations | 1 | 1 | K2 (U),
K3 (Ap) | Conceptual
Pedagogy | In-class
discussion | Interactive PPT | Class test with MCQ, CIA II | | | 2 | Bisection Method | 2 | - | K2 (U),
K3 (Ap) | Problem-
Based
Learning | Problem solving in groups | You Tube
videos | Problem solving assignments, CIA II | | | 3 | Fixed Point Iteration | 3 | 1 | K2 (U), | Collaborative | Peer instruction, | You Tube | Peer Review, | | | Method | | | K3 (Ap) | Learning, | Problem solving | videos | Problem solving | |---|-----------------------|---|---|----------|-----------|------------------|----------|------------------| | | | | | | Problem- | in groups | | assignments, | | | | | | | Based | | | CIA II | | | | | | | Learning | | | | | 4 | Newton Raphson Method | | | K2 (U), | Problem- | Guided problem | You Tube | Problem solving | | | | 3 | | 172 (4) | Based | solving sessions | videos | assignments, | | | | | | K3 (Ap) | Learning | | | CIA II | | 5 | Linear System of | | | K2 (U), | Problem- | Guided problem | You Tube | Solving exercise | | | Equations - Gauss | 3 | 1 | | Based | solving sessions | videos | problems, CIA | | | Elimination Method | | | K3 (Ap) | Learning | | | II | Activities (Em/ En/SD): Quiz on Logical Operations, Group Discussion on equivalence relation Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil Activities related to Cross Cutting Issues: Nil Assignment: Types of Relations – Last date to submit -09-09-2025 Seminar - Nil #### Sample questions #### Part A (1 Mark) - 1. Which of the following is a type of system software? - a) Microsoft Word - b) Operating System - c) Adobe Photoshop - d) Google Chrome - 2. Give the negation of the statement: Today is Saturday. - 3. When will you say that a lattice is bounded? - 4. Say true or false: A set having exactly one element is called singleton set. #### 5. Write Newton Raphson's formula. #### Part B (6 Marks) - 1. Explain the difference between system software and application software. - 2. Write the following statements in symbolic form. (i) If Avinash is not in a good mood or he is not busy, then he will go to Kharagpur. - (ii) If Sayantan knows object-oriented programming and oracle, then he will get a job. - 3. Let 'A' be a non-empty subset of real numbers. Define a relation r on A by x r y if x divides $y \forall x, y \in A$. Show that A is a poset with respect to r. - 4. In a class of 50 students, 20 students play football and 16 students play hockey. It is found that 10 students play both the games. Use the algebra of sets to find out the number of students who play neither. - 5. Solve the following system of equations using Gaussian elimination method. $$x + y + z = 9$$, $2x - 3y + 4z = 13$, $3x + 4y + 5z = 40$ #### Part C (12 Marks) - 1. Explain the process of converting a number from binary to Binary Coded Decimal (BCD) and demonstrate with an example. - 2. Find the truth set of each of the following propositional function P(x) defined on the set N of positive integers: (i) P(x): x + 3 < 7 (ii) P(x): x + 5 > 8 (iii) P(x): x + 4 < 1 - 3. Show that every chain is a distributive lattice. - 4. Give an example of a relation which is - (i) not reflexive, not symmetric and not transitive - (ii) transitive but neither reflexive nor symmetric - (iii) symmetric, transitive but not reflexive - (iv) symmetric, transitive and reflexive - 5. Find the positive root of $x \log_{10} x = 1.2$ using the bisection method in four iterations. Dr. S. Immaculate Shyla Head of the Department ~u --- Dr. J. Anne Mary Leema Course Instructor Department : Artificial Intelligence and Data Science Class : I B. Sc /BA/B. Com Title of the Course: NME I: Cyber Forensics Semester : I Course Code : IU241NM1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | | Marks | | |-------------|---|---|---|---|---------|-------------|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | IU241NM1 | 4 | 1 | - | - | 5 | 5 | 30 | 25 | 75 | 100 | #### **Objectives** 1. Understand the definition and core principles of computer forensics fundamentals 2. To study the various types of computer forensics evidence and their significance in investigations | СО | Upon completion of this course, the students will be able to: | Cognitive level | |----|---|-----------------| | 1 | recall and describe the definition of computer forensics fundamentals | K1(R) & K2 (U) | | 2 | apply and analyze the different types of computer forensics technology | K3(A) | | 3 | analyse various computer forensics systems | K4(An) | | 4 | apply the methods for data recovery, evidence collection and data seizure | K5(E) | | 5 | gain knowledge of duplication and preservation of digital evidence | K6(C) | K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyze; K5 - Evaluate; K6- Create Teaching plan Total Contact hours: 30 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assess
ment
hours | Cognitive
level | Pedagogy | Student
Centric
Methods | E Resources | Assessment/
Evaluation
Methods | |------|----------|--|-------------------|-------------------------|--------------------|---------------------------------|--|-----------------------------------|--| | I | Overview | of Computer Forensics T | Technology | | | | | | | | | 1. | Overview of Computer Forensics Technology: Computer Forensics Fundamentals, Use of Computer Forensics in Law Enforcement | 1 | 1 | K1(R) | Introductory session | Fundamentals
Through
Exploration | Online Notes | Overview | | | 2. | Computer Forensics Assistance to Human Resources/Employment Proceedings | 1 | | K3(A) | Lecture using
Chalk and talk | Reflection & Extension | PPT | Simple definitions CIA I | | | 3. | Computer Forensics Services - Benefits of professional Forensics Methodology | 1 | | K1(R) | Lecture using
Chalk and talk | Fundamentals
Through
Exploration | Presentations using Nearpod | Example with representation CIA I | | | 4. | Steps taken by Computer Forensics Specialists, Forensics Technology, Types of Law Enforcement | 1 | | K1(R) | PPT | Inquiry-Based
Introduction | YouTube
videos | Steps recall
CIA I | | | 5. | Forensics Technology, Types of Law Enforcement, Forensics Technology, Types of Law Enforcement | 1 | | K3(A) | Lecture using
Chalk and talk | Collaborative
Simulation | Online
tutorials and
videos | Different
technologies
recall
CIA I | | II | Compute | er Forensics Evidence and | capture | | | | | | | |-----|-----------|---|--------------|-----|--------|---------------------------------|---|---------------|--| | | 1. | Computer Forensics Evidence and capture: Data Recovery: Data Recovery Defined | 1 | 1 | K2(U) | Lecture using
Chalk and talk | Flipped or
Discovery-
Based
Learning | videos | Evaluation
through short
test
CIA I | | | 2. | Data Backup and Recovery - The Role of Backup in Data Recovery - The Data Recovery Solution | 1 | | K2(U) | Demonstration | Wrap-Up
Reflection | PPT | Map
knowledge
CIA I | | | 3. | Evidence Collection
and Data Seizure | 1 | | K2(U) | Lecture using videos | Collaborative
Simulation | Online videos | Differentiate
between
various ideas
CIA I | | | 4. | Collection Options, Obstacles, Types of Evidence - The Rules of Evidence, Controlling Contamination: The chain of custody | 1 | | K4(An) | PPT | Flipped or
Discovery-
Based
Learning | Notes | Seminar
CIA I | | | 5 | Controlling Contamination: The chain of custody | 1 | | K2(U) | Lecture using
Chalk and talk | Flipped or
Discovery-
Based
Learning | videos | Evaluation
through short
test
CIA I | | III | Duplicati | on and Preservation of Di | gital Evider | ıce | | | | | | | | 1. | Duplication and
Preservation of Digital
Evidence: Processing
steps | 1 | 1 | K1(R) | PPT | Evidence
Handling
Relay | Online videos | Recall steps
CIA I | | | 2. | Legal Aspects of collecting and Preserving Computer | 1 | | K1(R) | Lecture using
Chalk and talk | Collaborative
Simulation | Notes | MCQ
CIA I | | | | forensic Evidence | | | | | | | | |----|-----------|---|---|---|--------|---------------------------------|---|----------------------|---| | | 3. | Computer image Verification and Authentication | 1 | | K2(U) | Demonstration | Flipped or
Discovery-
Based
Learning | YouTube
videos | Recall steps
CIA I | | | 4. | Special needs of Evidential Authentication | 1 | | K4(An) | Lecture using videos | Problem-Based
Scenario | Class point | Short
Summary
CIA II | | | 5. | Pratical consideration | 1 | | K4(An) | Demonstration | Problem-Based
Scenario | Online videos | Hand on implementati on CIA II | | IV | Compute | r Forensics Analysis | | | | | | | | | | 1. | Computer Forensics
Analysis | 1 | 1 | K2(U) | Lecture using Chalk and talk | Computational learning | Notes | Short
summary
CIA II | | | 2. | Discovery of Electronic Evidence | 1 | | K1(R) | Lecture using videos |
Contextual learning | YouTube videos | Concept
explanation
CIA II | | | 3. | Electronic Document
Discovery | 1 | | K3(A) | Demonstration | Constructivist learning | PPT | Recall Steps
CIA II | | | 4. | A Powerful New
Litigation Tool | 1 | | K2(U) | Lecture using
Chalk and talk | Experimental tools | Online videos | Concept
explanation
CIA II | | | 5. | Identification of Data: Time Travel, Forensic Identification and Analysis of Technical Surveillance Devices | 1 | | K1(R) | PPT | Evidence
Handling
Relay | PPT using
Nearpod | Evaluation
through short
test
CIA II | | V | Reconstru | ucting Past Events | | I | 1 | <u> </u> | _1 | 1 | <u>l</u> | | | 1. | Reconstructing Past
Events | 1 | | K2(U) | Lecture using
Chalk and talk | Create a Forensics Storyboard | Online Notes | True/False
CIA II | | | 2. | How to Become a | 1 | | K2(U) | Demonstration | Inspired | PPT | Evaluation | | | Digital Detective | | | | | Simulation | | through problems CIA II | |----|---|---|---|--------|---------------|-------------------------------|-----------------------------|-------------------------| | 3. | Useable and Unusable
File Formats,
Converting Files | 1 | 1 | K2(U) | PPT | Evidence
Handling
Relay | Presentations using Nearpod | Recall Steps
CIA II | | 4. | Networks: Network
Forensics Scenario - a
technical approach | 1 | | K4(An) | Demonstration | Collaborative
Simulation | Class point | MCQ
CIA II | | 5. | Destruction of E-Mail - Damaging Computer Evidence, Documenting the Intrusion on Destruction of Data - System Testing | 1 | | K3(A) | PPT | Computational learning | Online videos | Short essays
CIA II | Activities (Em/En/SD): - 1. The Role of Backup in Data Recovery and show an implementation of data recovery solution in real world. - 2. Role of Surveillance Devices in cyber forensics. Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil Activities related to Cross Cutting Issues: Nil #### Assignment: - 1. Legal aspects of collecting and preserving cyber forensic evidences. - 2. Forensic Identification and Analysis of Technical Surveillance Devices.-Last date to submit 05-09-2025 #### Seminar Topic: - 1. How to become a digital detective? - 2. Computer image verification and authentication #### Sample questions (minimum one question from each unit) #### Part A (2 Marks) - 1. ____ is the application of investigative and analytical techniques to gather and preserve evidence from digital devices, networks, and data storage media.(K1-R,C0-1) - 2. Controlling contamination through the chain of custody involves maintaining a _____ and secure process that tracks the handling, transfer, and storage of evidence from its initial collection through its presentation in court.(K2-U,C0-2) - 3. The proper collection and preservation of computer forensic evidences should be within the bounds of _____requirements and ethical standards.(K3-A,CO-3) - 4. ______is a powerful tool in litigation.(K2-U,CO-4) - 5. Digital detectives use ______to identify file formats that are usable for extracting information.(K1-R,CO-5) #### Part B (4 Marks) - 1. Explain the fundamental role of computer forensics in law enforcement. ? (K1-R, CO-1) - 2. Discuss the challenges and options available for evidence collection and data seizure in digital investigations. (K2-U, C0-2) - 3. What are the legal aspects of collecting and preserving computer forensic evidence? ? (K2-U, CO-3) - 4. Describe the process of time travel in computer forensics. ? (K1-R, CO-4) - 5. Discuss the methodologies of investigating network-related incidents in cyber forensics. (K4-An, CO-5) #### Part C (9 Marks) - 1. Explain the steps taken by computer forensics specialists during investigations and highlight the types of law enforcement agencies that utilize forensic technology effectively.(K2-U,CO-1) - 2. Explain the concept of the chain of custody in preserving digital evidence.(K4-An,CO-2) - 3. What are the practical considerations in computer image verification and authentication?(K3-A,C0-3) - 4. Discuss the significance of electronic document discovery (EDD) as a powerful tool in litigation.(K4-An,C0-4) - 5. Discuss the importance of identifying usable and unusable file formats in forensic investigations.K5-E,C0-5) Dr. S. Immaculate Shyla Head of the Department Dr. Sruthy B S Course Instructor Department : Artificial Intelligence and Data Science Class : I B. Sc Artificial Intelligence and Data Science Title of the Course: Foundation Course FC: Web Designing Semester : I Course Code : IU241FC1 | Course Code | Course Code L T P S Credits Inst. Hours | | Total | | Marks | | | | | | |-------------|---|---|-------|---|---------|-------------|-------|-----|----------|-------| | Course Code | L | 1 | Г | 3 | Credits | Inst. Hours | Hours | CIA | External | Total | | IU241FC1 | 4 | 1 | - | - | 5 | 5 | 30 | 25 | 75 | 100 | ### **Objectives** 1. To understand the design rules in constructing web pages and sites 2. To enable the students to learn the basic working scheme of the Internet and World Wide Web. | CO | Upon completion of this course, the students will be able to: | Cognitive level | |----|---|-----------------| | 1 | understand and identify the elements and attributes in a web page | K1(R) & K2 (U) | | 2 | design webpages using DHTML and Cascading Style Sheets | K3(A) | | 3 | design and construct websites using tables | K4(An) | | 4 | apply the attributes in designing webpages | K5(E) | | 5 | analyze a webpage and identify its elements and attributes | K6(C) | Teaching plan Total Contact hours: 30 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assess
ment
hours | Cognitive
level | Pedagogy | Student
Centric
Methods | E Resources | Assessment/
Evaluation
Methods | |------|-----------|--|-------------------|-------------------------|--------------------|---------------------------------|-------------------------------------|-----------------------------------|--| | I | Introduct | ion to HTML | | | | | | | | | | 1. | HTML Introduction, Designing a Home page | 1 | | K1(R) | Introductory session | Responsive
Design
Exploration | Online videos | Overview
CIA I | | | 2. | History of HTML | 1 | 1 | K2(U) | Lecture using
Chalk and talk | Reflective
Journaling | PPT | Simple definitions CIA I | | | 3. | HTML generations, HTML Documents | 1 | | K2(U) | Lecture using
Chalk and talk | Roleplay | YouTube videos | Example with representation CIA I | | | 4. | Anchor Tag,
Hyperlinks | 1 | | K2(U) | Lecture using
Chalk and talk | Inquiry based learning | Videos/lectur
es/notes | Simple programs CIA I | | | 5. | Sample HTML
documents, Anchor
Tag, Hyperlinks | 1 | | K2(U) | Demonstration | Problematic analysis | Presentations
using
Nearpod | Concept
definitions
CIA I | | II | Head and | Body Section | 1 | I | | • | | | | | | 1. | Head and Body section:
Header Section, Title
Prologue, Links | 1 | 1 | K2(U) | Lecture using
Chalk and talk | Build-a-Page
Challenge | YouTube
lecture videos | Evaluation
through short
test
CIA I | | | 2. | Colourful web page,
Comments lines, | 1 | | K2(U) | Lecture using videos | Code &
Comment, Pair
Activity | PPT using
Nearpod | Differentiate
between
various ideas | | | | designing the body | | | | | | | CIA I | |-----|---------|--|---|---|--------|------------------------------|-------------------------------------|----------------------------|--| | | 3. | Heading printing, Aligning the headings | 1 | | K4(An) | PPT | Tag Sorting & Styling Game | PPT | Seminar
CIA I | | | 4. | Horizontal rule, paragraph, tab settings, | 1 | | K1(R) | Demonstration | Tab
Simulation
with CSS | videos | Recall steps
CIA I | | | 5 | Image and pictures, Embedding PNG format Images | 1 | | K2(U) | Lecture using videos | Code &
Comment, Pair
Activity | PPT using
Nearpod | Differentiate
between
various ideas
CIA I | | III | Ordered | and unordered lists | | | | | | | | | | 1. | Ordered and unordered lists: List-Unordered lists | 1 | | K1(R) | PPT | Active
Exploration | Interactive notes | Map
Knowledge
CIA I | | | 2. | Headings in a list,
ordered lists, Nested
lists, Table handling | 1 | | K1(R) | Lecture using Chalk and talk | Assess
Understanding | Online tutorials and notes | MCQ
C A1 | | | 3. | Tables- table creation in HTML | 1 | 1 | K1(R) | Lecture using videos | Collaborative
Learning | YouTube
videos | Short
Summary
CIA I | | | 4. | Width of the Tables and cells | 1 | | K3(A) | Demonstration | Active
Exploration | Online videos | MCQ
CIA II | | | 5. | Cells spanning multiple rows/Columns-Coloring cells – Column specification | 1 | | K2(U) | PPT | Inquiry-Based
Learning | Lecture notes | Concept
explanations
CIA II | | IV | Frames | | | | | | | | | | | 1. | Frames, frame set, definition, | 1 | | K2(U) | Lecture using | Project-Based
Learning | YouTube lecture videos | Short
summary | | | | | • | | | Chalk and talk | | | CIA II | | | | page design | | | | videos | Exploration | | explanations
CIA II | |---|-------|--|---|---|-------------------|---------------------------------|--------------------------------------|------------------------
---| | | 3. | Project: Frame set
definition – Animals,
Birds, Fish | 1 | | K3(A) | Demonstration | Assess
Understanding | PPT using
Nearpod | Recall Steps
CIA II | | | 4. | Forms: Action 15
attributes, Method
Attributes, Enctype
attributes, | 1 | 1 | K2(U) | Lecture using
Chalk and talk | Flipped
Classroom | PPT | Concept
explanations
CIA II | | | 5. | Drop down list, sample forms | 1 | | K1(R) &
K4(An) | Lecture using
Chalk and talk | Problem-
solving
methodologies | Classpoint
PPT | Explanation
and Short
summary
CIA II | | V | DHTML | and Style sheets | | 1 | | | | - | , | | | 1. | DHTML and Style sheets: Defining styles | 1 | | K2(U) | Lecture using
Chalk and talk | Collaborative
Learning | YouTube lecture videos | True/False
CIA II | | | 2. | Elements of styles | 1 | 1 | K2(U) | Demonstration | Real-World
Integration | Online notes | Evaluation
through
problems
CIA II | | | 3. | Linking a style sheet to an HTML document | 1 | | K2(U) | PPT | Gamified
Learning | PPT | Recall Steps
CIA II | | | 4. | Inline styles, Internal style sheets, | 1 | | K4(An) | Demonstration | Assess
Understanding | PPT | MCQ
CIA II | | | 5. | External style sheets,
Multiple styles | 1 | | K2(U) | Lecture using
Chalk and talk | Collaborative
Learning | YouTube lecture videos | True/False
CIA II | Activities (Em/En/SD): 1. Implement the basic tags in HML and create a webpage. 2. Creating interactive web pages using forms. Course Focusing on Cross Cutting Issues(Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil Activities related to Cross Cutting Issues: Nil Assignment: 1. HTML history and features. 2. Design a web page embedding a video from YouTube using the <i frame> tag. -Last date to submit 04-09-2025 Seminar Topic: 3. Different HTML tags (any 5) 4. Inserting images using the tag with src attribute for image source, alt attribute for alternative text, and optionally width and height attributes for dimensions. Sample questions (minimum one question from each unit) Part A (2 Marks) 1. The tag is used to create hyperlinks in HTML documents, allowing navigation between different web pages.(K1-R,CO-1) 2. Paragraphs () in HTML are used to ______, organizing textual content into logical units.(K1-R,CO-2) 3. Ordered lists in HTML are created using the tag and are used when a sequence or ______ order is important.(K2-U,CO-3) 4. Frames in HTML allow for dividing a web page into multiple ______, each containing a separate HTML document.(K3-A,CO-4) 5. Linking a style sheet to an HTML document can be achieved using _____ methods. (K4-An,CO-5) #### Part B (4 Marks) - 1. Describe the role of the anchor tag in HTML and provide a example(K1-R,CO-1) - 2. Explain the purpose of the <title> tag in the <head> section of an HTML document.(K3-An,CO-2) - 3. Describe the purpose of unordered and ordered lists in HTML.(K2-U,CO-3) - 4. Discuss two attributes of the <form> tag and their roles in processing form data.(K1-R,CO-4) - 5. Explain the difference between inline styles, internal style sheets, and external style sheets in HTML.(K2-U,CO-5) #### Part C (9 Marks) - 1. Explain the evolution of HTML generations with examples of HTML elements .(K1-R,CO-1) - 2. Explain the importance of the <head> section in an HTML document, detailing its key components such as <title>, <meta>, and <link>.(K2-U,CO-2) - 3. Explain the differences between unordered and ordered lists in HTML.(K3-An,CO-3) - 4. Explain the concept of frames in HTML.(K2-U,CO-4) - 5. Explain the concept of Dynamic HTML (DHTML).(K4-An,CO-5) Dr. S. Immaculate Shyla Head of the Department Dr. Sruthy B S Course Instructor **Department** : Artificial Intelligence and Data Science Class : II B. Sc Artificial Intelligence and Data Science Title of the Course: Core Course III: Artificial Intelligence and its Applications Semester : III Course Code : IU243CC1 | Course Code | T | Т | D | C | Credits | Inst. Hours | Total | Marks | | | | | |-------------|---|---|---|---|---------|-------------|-------|-------|----------|-------|--|--| | Course Code | L | 1 | r | 3 | Credits | inst. Hours | Hours | CIA | External | Total | | | | IU243CC1 | 4 | 1 | - | - | 5 | 5 | 75 | 25 | 75 | 100 | | | #### **Objectives** 1. To introduce the basic principles, techniques and principles and applications of Artificial Intelligence. 2. To develop applications in real-type scenarios. | СО | Upon completion of this course, the students will be able to: | Cognitive level | |----|---|-----------------| | 1 | understand AI fundamentals | K1(R) & K2 (U) | | 2 | learn problem solving techniques in AI | K3(A) | | 3 | utilize knowledge representation and reasoning | K4(An) | | 4 | implement and evaluate AI models | K5(E) | | 5 | apply AI techniques to solve real world problems | K6(C) | ## **Total Contact hours: 75 (Including lectures, assignments and tests)** | Unit | Module | Торіс | Teaching
Hours | Assessment hours | Cognitive level | Pedagogy | Student
Centric
Methods | E Resources | Assessment/
Evaluation
Methods | |------|--------|---|-------------------|------------------|-----------------|---|--|------------------------------------|--| | I | INTROI | DUCTION TO ART | IFICIAL II | NTELLIGEN(| CE | | • | • | | | | 1. | Introduction,
History,
Definition of AI | 1 | | K2(U) | Introductory session Historical Narrative Technique, Visual and Interactive Methods | Flipped
Classroom
Approach
Inquiry Based
Learning. | Video
Lectures,
Notes/Slides | Evaluation
Through
Questions.
CIA I | | | 2. | Evolution of AI
Applications of
AI in various
fields | 2 | 1 | K3(A) | Case Based
Learning | Interactive Timelines & Digital Storytelling | Interactive PPT | Quiz using
Slides
CIA I | | | 3. | Types of AI:
Narrow and
General AI | 2 | | K1(R) | Concrete-to-
Abstract
Progression | Skit or
Roleplay | Video
Lectures,
Notes/Slides | Quiz
CIA I | | | 4. | Super AI | 2 | 1 | K1(R) | Thought Experiments, Student Reflections & Future casting | Structured Debates, | Online notes | Experiments
CIA I | | | 5. | Machine learning
Vs Deep learning | 2 | | K3(A) | Comparative Methodology, Active & Experiential Learning | Interactive
Comparison
Challenge,
Peer Teaching | Interactive PPT. | Hands on Mini
Projects.
CIA I | | | 6. | AI techniques:
Search,
Knowledge, | 3 | 1 | K4(AN) | Concept Focus,
Algorithm
Races | Learning by
Solving
Puzzles, | PPT | Hands-on Real-
World
Applications. | | | | representation, Learning | | | | | Mini
Challenges | | CIA I | |----|-------|---|---------------|-----------|-------|---|---|-----------------|---| | II | PROBL | EM SOLVING ANI | SEARCH | STRATEGIE | ES | 1 | | • | - | | | 1. | Problem solving as state space search | 1 | | K2(U) | Lecture using Chalk and talk | Scenario
Based
Learning | Class point | Evaluation
through short
test
CIA I | | | 2. | Uninformed search strategies | 2 | 1 | K3(A) | Lecture with examples | Algorithm
Races, Visual
Simulation
Tools | PPT, Python IDE | List some
examples of
searching
making ideas
CIA I | | | 3. | Uniform cost search | 2 | | K3(A) | Lecture using videos | Case based
Learning | PPT, Python IDE | List some
examples of
searching
making ideas
CIA I | | | 4. | Informed search strategies: A* Algorithm | 2 | | K6(C) | Logic
Explanations
with examples. | Algorithm
Races, Visual
Simulation
Tools | Interactive PPT | Create real
time
application
examples
using search
techniques
CIA I | | | 5. | Greedy best first
search, Heuristic
Functions | 2 | 1 | K6(C) | Logic
Explanations
with examples. | Code
Completion
Activities | PPT | Create real
time
application
examples using
search
techniques
CIA I | | | 6. | Constraint satisfaction problems | 1 | | K3(A) | Lecture using
Chalk and talk | Conceptual Understanding, Algorithmic Reasoning | Class point | Evaluation
through raising
questions
CIA I | | | 7. | Practical consideration | 1 | | K6(C) | Logic Explanations. | Code Tracing
Exercises | Python IDE | Hand on
Implementation
CIA I | |-----|-------|---|------------|-----------|--------|--|-------------------------------|-----------------------------|-------------------------------------| | | 8. | Practical implementation | 1 | 1 | K6(C) | Logic Explanations. | Code Tracing
Exercises | Python IDE | Hand on
Implementation
CIA I | | III | KNOWI | LEDGE REPRESEN | NTATION A | AND REASO | NING | | | | | | | 1. | Introduction to knowledge representation, Logical reasoning | 1 | | K2(U) | PPT | Concept Based
Learning | PPT using
Nearpod | Slip Test
CIA I | | | 2. | Propositional
Logic, First order
Logic | 2 | 1 | K1(R) | Logic
Explanations | Concept Based
Learning | PPT | Create programs using arrays. CIA I | | | 3. | Rule based
systems and
Expert systems | 3 | | K4(An) | Flipped
Classroom | Scenario
Based
Learning | Presentations using Nearpod | Practice
Exercises
CIA I | | | 4. | Semantic
Networks &
Frames | 2 | 1 | K4(An) | Lecture using videos, Code Tracing | Project
Based
Learning | PPT Using
Gamma | Practice
Exercises
CIA II | | | 5. | Probabilistic
Reasoning:
Bayesian
Networks | 3 | | K3(A) | Blended
Learning, Code
Tracing | Code Puzzle
Solving | Interactive PPT | MCQ Using
Nearpod
CIA II | | | 6. | Practical Implementation | 1 | 1 | K6(C) | Logic Explanations. | Code Tracing Exercises | Class point | Hand on
Implementation
CIA II | | IV | | NE LEARNING AN | ND AI APPI | LICATIONS | | | | _ | | | | 1. | Supervised Learning: classification & Regression | 2 | | K2(U) | Group Work &
Inquiry-Based
Tasks | Ethics & Interpretation | PPT | Interactive
Sessions.
CIA II | | | 2. | Unsupervised Learning: | 2 | 1 | K3(A) | Error Analysis & Feedback | Principal
Component | IDLE
Environment. | Demonstration of real-world | | | | Clustering & dimensionality reduction | | | | Loops | Analysis | | Applications. CIA II | |---|----|--|-----------|------------|--------|--|--------------------------------------|---------------------------|---| | | 3. | Reinforcement
Learning basics | 2 | | K3(A) | Reflective Discussions, Visual Diagrams & Flow Models | Build-Your-
Own RL
Environment | IDLE
Environment. | Evaluation
through short
test
CIA II | | | 4. | AI in image processing & computer vision | 2 | | K5(E) | Tool-Focused Learning, Ethical Thinking & Real-World Application | DIY Object
Detection
Challenge | Class Point | Practical
CIA II | | | 5. | AI in Natural
Language
Processing | 2 | | K2(U) | Critical Media
& Ethics
Discussions,
Roleplay &
Simulation | Data Labelling & Sentiment Sleuths | Interactive
PPT, Notes | Practical
CIA II | | | 6. | AI in Robotics | 2 | | K4(An) | Simulation &
Virtual Labs,
Interdisciplinary
Integration | Simulation-
Based
Learning | Interactive
PPT | Evaluation
through short
test
CIA II | | | 7. | Program
Implementation | 1 | 1 | K6(C) | Logic Explanations. | Code Tracing
Exercises | Class point | Hand on
Implementation
CIA II | | V | | ICS, CHALLENGE | S AND FUT | TURE TRENI | DS | | | | _ | | | 1. | Ethical
Consideration in
AI | 2 | | K2(U) | Socratic
Seminars &
Debates | Design with Ethics Challenge | Classpoint
PPT | True/False
Assessment
CIA II | | | 2. | Bias and fairness in AI | 2 | 1 | K3(A) | Design Thinking with Fairness Constraints | Bias Detective
Workshops | PPT | Evaluation
through
exercises
CIA II | | 3. | AI and Privacy
Concerns,
Expansible AI | 2 | | K3(A) | Data Awareness
Activities | Data Awareness Scavenger Hunt | Online
Tutorials and
Notes | Evaluation
through short
test
CIA II | |----|--|---|---|--------|--------------------------------|----------------------------------|----------------------------------|---| | 4. | Future of AI,
Autonomous
systems | 2 | | K4(An) | Simulation & Design Challenges | Future
Scenario
Design | Interactive PPT | MCQ
CIA II | | 5. | Quantum AI, AGI | 2 | 1 | K4(An) | Conceptual
Analogies | Simulation & Sandbox Exploration | YouTube
Lecture
Videos | GD.
CIA II | | 6. | Practical Consideration Practical Implementation | 2 | 1 | K6(C) | Logic
Explanations. | Code Tracing
Exercises | Class point | Hand on
Implementation
CIA II | Activities (Em/ En/SD): 1. To know about the basic of Artificial intelligence and its applications using different methodologies. 2. To implement real world applications Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil Activities related to Cross Cutting Issues: Nil Assignment: 1. Constraint Satisfaction Problems 2. AI and Primary Concerns -Last date to submit 03-09-2025 Seminar Topic: - 1. Heuristic functions - 2. AI in Robotics #### Sample questions (minimum one question from each unit) #### Part A (1 Mark) - 1. Which of the following is a subfield of AI? (K1-R, CO-1) - (a) Cybersecurity, (b) Machine Learning, (c) Web Development, (d) Database Management - 2. Which of the following is an example of an uninformed search strategy? (K2-U, C0-2) - (a) A* Search (b) Best-First Search (c) Breadth-First Search (d) Hill Climbing - 3. Which of the following is NOT a common knowledge representation technique? (K2-U, CO-3) - (a) Semantic networks, (b) Frames, (c) Decision trees (d) Relational databases. - 4. Which of the following is a major ethical concern in AI applications? (K5-E, CO-4) - (a) Fast processing (b) Bias in decision-making systems (c) Use of colours in graphs (d) Multiple programming languages - 5. What kind of problems is Quantum AI especially suited for? (K4-An, CO-5) - (a) Simple arithmetic (b) Linear regression, (c) Complex optimization and high-dimensional search, (d) Drawing bar graphs. #### Part B (6 Marks) - 1. Write about the evolution of artificial intelligence? (K1-R, CO-1) - 2. Explain uninformed search in AI with e.g.? (K2-U, CO-2) - 3. Write about Machine learning with e.g. (K2-U, CO-3) - 4. What is the difference between classification & regression? (K5-E, CO-4) - 5. How do we use privacy concerns in AI? (K4-An, CO-5) #### Part C (12 Marks) - 1. Write about Artificial Intelligence techniques in detail. (K2-U, CO-1) - 2. Explain Greedy search Algorithm with example? (K4-An, CO-2) - 3. Explain with example about the concept of Reinforcement learning? (K5-E, CO-3) - 4. What do you mean by Probabilistic Reasoning in terms of Bayesian Networks? (K6-C, CO-4) - 5. Explain about Quantum AI? (K2-U, CO-5). Smooth Dr. S. Immaculate Shyla Head of the Department Dr. Sruthy B S Course Instructor ### **Teaching Plan** Department : Artificial Intelligence and Data Science Class : II B. Sc Artificial Intelligence and Data Science Title of the Course : Core Lab Course III: Artificial Intelligence Applications Lab Semester III Course Code : IU243CP1 | Course Code | L | Т | P | s | Credits | Credits Inst. Hours Total | | | Marks | | |-------------|---|---|---|---|---------|---------------------------|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | IU243CP1 | - | 1 | 4 | - | 5 | 5 | 75 | 25 | 75 | 100 | #### **Objectives** 1. To develop AI-based problem-solving skills by applying mathematical operations and machine learning techniques. 2. To design and implement AI applications in natural language processing and to enhance decision-making and automation. #### **Course Outcomes** | СО | Upon completion of this course, the students will be able to: | Cognitive level | |----|--|-----------------| | 1. | apply fundamental AI concepts, including search algorithms, mathematical operations, and constraint satisfaction problems. | К3 | | 2. | implement machine learning models such as linear regression for predictive analysis and evaluate their performance. | K5 | | 3. | develop AI applications in natural language processing. | K6 | | 4. | implement and analyze computer vision techniques, including image processing and face detection. | K4 | | 5. | design and implement heuristic-based algorithms (A*) for optimization and decision-making in AI applications. | К6 | # Teaching plan Total Contact hours: 75 (Including lectures, assignments and tests) | Unit | Торіс | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Methods | E Resources | Assessment/
Evaluation
Methods | |------|--|-------------------|---------------------|--------------------|------------------------------------|-------------------------------|---------------------------|--------------------------------------| | 1 | Basic mathematical operations for AI-Implement a simple search algorithm | 7 | | K2(U) | Case based
Learning | Software
Demonstratio
n | IDLE
Environment | Performance | | 2 | Implement Sentiment Analysis using NLTK | 6 | 6 | K2(U) | Lecture using
Chalk and talk | Syntax based learning | Interactive PPT | Observation | | 3 | Implement Image Processing with OpenCV | 6 | | K2(U) | Concept
Explanations | Code Tracing | Python IDE | Viva voce | | 4 | Predict house prices using linear regression | 7 | 5 | K5(An) | Demonstration | Peer Code
Review | YouTube videos | Identify and fix bugs | | 5 | Implement a Constraint Satisfaction Problem | 5 | 5 | K3(A) | Visualization | Peer Code
Review | Online videos, PPT | Short Coding snippets | | 6 | Implement A* algorithm | 5 | | K3(A) | Demonstration&
Code Walkthrough | Syntax based learning | PPT & online packages | Performance | | 7 | Design an AI
Chatbot | 5 | 8 | K2(U),
K6(E) | Logical Thinking | Demonstratio n | PPT | Model test | | 8 | Implement Speech
Recognition | 5 | | K6(C) | Demonstration | Scenario Based Learning | Nltk online tool packages | Evaluation through short exercises. | | 9 | Implement Face Detection and Recognition. | 5 | 5 | K3(A) | Conceptual learning | Code tracing | Online videos | Performance | Activities (Em/ En/SD): 1. Analyze and implement the concepts using Artificial intelligence. - 2. Machine Learning Exercises - 3. Mini Projects Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil Activities related to Cross Cutting Issues: Nil Assignment: 1. Satisfaction problem- Exercises 2. NLTK (Last Date for Submission: (17-08-2025) Dr. S. Immaculate Shyla Head of the Department Dr. Sruthy B S Course Instructor ## **Teaching Plan** **Department** : Artificial Intelligence and Data Science Class : II B. Sc Artificial
Intelligence and Data Science Title of the Course : Elective Course III : Data Structures Semester III Course Code : IU243EC1 | Course Code | L | T | P | S | Credits | Inst. Hours | Total | | Marks | | |-------------|---|---|---|---|---------|-------------|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | IU243EC1 | 3 | 1 | - | - | 3 | 4 | 60 | 25 | 75 | 100 | ### **Objectives** 1. To enhance the problem solving and critical thinking skills. 2. To understand the data structure techniques. #### **Course Outcomes** | CO | Upon completion of this course, the students will be | Cognitive | |----|--|-----------| | | able to: | level | | 1 | remember the concepts of basic data structures. | K1 | | 2 | understand the operations of data structures. | K2 | | 3 | apply data structures to solve problems. | К3 | | 4 | analyze network structures using trees and graphs. | K4 | | 5 | evaluate and create various algorithmic techniques and its applications. | K5 & K6 | Teaching plan Total Contact hours: 60 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Methods | E Resources | Assessment/
Evaluation
Methods | |------|-----------|--|-------------------|---------------------|--------------------|---|--|------------------------------------|--| | I | Overview | of Data Structures | | | | | | | | | | 1. | Introduction and
Overview: Concept
of data Structures | 1 | | K1(U) | Introductory
session
about Data
Structures,
Real Time
applications | Inquiry-Based
Learning,
Case Studies | Video
Lectures,
Notes/Slides | Mentimeter-
WordCloud,
CIA I | | | 2. | Python Specific Data
Structures | 2 | | K2(R) | Flipped
Classroom | Gamified Quiz | Interactive PPT | Quiz using
Slido, CIA I | | | 3. | Performance Analysis- Data structure operations | 2 | | K2(U) | Concept
Explanations | Concept-based discussion | Notes/Slides | Slip Test,
CIA I | | | 4. | Arrays- Linear
arrays-
Representation of
Linear arrays in
Memory | 2 | 1 | K2(U) | Syntax
Explanations | Mind
mapping-
Infographics | Interactive PPT | Quiz using
Slido, CIA I | | | 5. | Traversing Linear Arrays- Inserting and Deleting | 2 | | K2(U) | Simulation
Tasks | Peer Code
Review | PPT, Python IDE | Exercises using Arrays, CIA I | | | 6. | Representation of
Multidimensional
Arrays | 2 | | K3(A) | Demonstration
,
Code
Walkthrough | Syntax based learning | PPT &Python IDE | Create
programs
using Arrays,
CIA I | | II | Stacks an | d Queues | | | | | | | | | | 1. | Stacks – An
Introduction | 1 | 1 | K1(R) | Lecture using Chalk and talk | Scenario
Based | Classpoint
PPT | Evaluation through short | | | | | | | | | Learning | | test, CIA I | |-----|----------|--|---|---|--------|------------------------------------|---|-----------------------------------|--| | | 2. | Operations on stack-
Insert, Delete,
Update | 2 | | K2(U) | Lecture with examples | Code Development for Push, Pop Operations | Python IDE,
Notes | List some
applications
of Stack,
CIA I | | | 3. | Arithmetic Expressions: Evaluation of a postfix expression | 2 | | K3(A) | Lecture
Method | Mathematical
Equations-
Solve | Python IDE,
Notes | Exercises –
Arithmetic
Expressions,
CIA I | | | 4. | Transforming infix expression into postfix | 2 | | K3(A) | Lecture
Method | Mathematical
Equations-
Solve | Python IDE,
Notes | Exercises – Arithmetic Expressions to Postfix, CIA I | | | 5. | Queues: An
Introduction | 1 | 1 | K1(R) | Concept
Explanations | Scenario Based Learning | PPT | List some
applications
of Queue,
CIA I | | | 6. | Operations on queues, Insert, Delete, and Update | 2 | | K2(U) | Syntax
Explanations | Code Development for Queue operations | Classpoint | Debug the given snippets, CIA I | | III | Linked I | List | | | | | | | | | | 1. | Linked List:
Introduction | 1 | | K2(U) | PPT | Concept Based
Learning | PPT using
Nearpod | Slip Test,
CIA I | | | 2. | Representation of
Linked list in
memory | 1 | | K1(R) | Syntax
Explanations | Concept Based
Learning | PPT | Create programs using arrays, CIA I | | | 3. | Traversing a linked list-Searching | 2 | 1 | K4(An) | Flipped
Classroom | Scenario
Based
Learning | Presentations
using
NearPod | Searching
Exercises
CIA I | | | 4. | Insertion into a linked list- Insertion Algorithm | 2 | | K4(An) | Lecture using videos, Code Tracing | Project Based
Learning | PPT | Sorting
Exercises, II
CIA | | | 5. | Deletion from a Linked List- Deletion Algorithms | 2 | | K3(A) | Blended
Learning | Code Puzzle
Solving | Interactive PPT | MCQ Using
Nearpod, II
CIA | |----|-----------|---|---|---|--------|--|--|---------------------------|---| | | 6. | Doubly Linked List-
Insertion-Deletion | 1 | 1 | K3(A) | Syntax
Explanations,
Visual
Simulations | Project Based
Learning | Classpoint
PPT | Create programs using Linked List, II CIA | | | 7. | Applications of
Linked List | 1 | | K5(E) | Lecture
Method | Scenario Based Learning | Classpoint | List out the real time applications of Linked List,II CIA | | IV | Trees and | d Graphs | | | | | | | | | | 1. | Tree Data Structure:
Tree Terminologies | 1 | | K2(U) | Constructivist
Learning | Concept Mapping, Code Development | Self made
Videos, PPT | Short
summary, II
CIA | | | 2. | Binary Trees-
Representation of
binary trees in
memory | 1 | 1 | K3(A) | Contextual
Learning | Live Coding
Practice | Self made
Videos, PPT | Create a
snippet for
Binary
Tree,II CIA | | | 3. | Traversing Binary Trees- Pre order- In- order- Post order | 1 | | K3(A) | Computational Learning | Error Spotting
Exercises | Classpoint
PPT | Evaluation
through short
test,II CIA | | | 4. | Graphs- Graph
Terminologies | 1 | | K4(An) | PPT,
Programming
Demo | Pair
Programming
Trace
Worksheets | PPT | Construct a graph for the given criteria,II CIA | | | 5. | Types of graphs-
Topological Sort | 2 | 1 | K3(A) | Guided
Discovery,
Hands-on Lab
Sessions | Real Life
Analogies,
Debugging
Sessions | Interactive
PPT, Notes | Quiz Using
Slido,II CIA | | | 6. | Euler Circuit | 2 | | K4(An) | Demonstration | Mini Projects | Notes/Slides | Evaluation
through short
test,II CIA | | | 7. | Breadth first search Depth first search | 2 | | K6(C) | Analytical
Study | Comparative
Study | Interactive
PPT | Create code
for BFS,
DFS,II CIA | |---|-----------|---|---|---|--------|---|--|------------------------------|---| | V | Sorting a | and Hashing | | | | | | | | | | 1. | Sorting: Sorting Techniques | 1 | | K1(R) | Case-Based
Teaching,
Experiential
Learning | Real Life
Modeling,
Coding with a
twist | Classpoint
PPT | Quiz | | | 2. | Insertion sort | 2 | 1 | K3(A) | Contextual
Learning | Code Development Activity | PPT | Evaluation throughsortin g exercises | | | 3. | Selection sort, Quick sort, | 2 | | K3(A) | Hands on Practice | | Simulation using VisuAlgo | Evaluation through short test | | | 4. | Merge sort | 1 | | K4(An) | Syntax
Explanations | Draw merging process of sub arrays | Interactive PPT | MCQ | | | 5. | Searching-
Searching
Techniques- Linear
search, Binary
search | 2 | 1 | K3(A) | Experiential
Learning | Employee
Database
Simulation | Youtube
Lecture
Videos | Develop a
simple
program for
linear search | | | 6. | Hashing: Static
Hashing, Hash table,
Hash functions | 2 | | K2(U) | Interactive ppt,
Analogical
Pedagogy | Simulate
storing keys in
a hash table | PPT Using
Nearpod | Quiz Using
Slido | Activities (Em/En/SD): 1. List out the applications of Linked List 2. Hashing Techniques Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil Activities related to Cross Cutting Issues: Nil Assignment: 1. Queue and its applications 2. Operations of Linked List (Last Date for Submission: 12-08-2025) Seminar Topic: Linear Search Sample questions (minimum one question from each unit) Part A (1 Mark) 1. Which of the following best describes the time complexity of accessing an element in a linear array by index? a) O(n) b) O(log n) c) O(1)d) $O(n^2)$ 2. Which data structure is used in evaluating postfix expressions? b) Stack c) Linked List a) Oueue d) Tree 3. In a singly linked list, what happens when the first node is deleted a) All nodes get deleted b)The list becomes circular c) The head pointer is updated to the next node d) Memory leak occurs 4. Which traversal technique is used in Breadth-First Search (BFS) for graphs? a) Stack-basedb) Recursionc) Queue-based d) Hashing 5. Which sorting technique generally performs best on small datasets and is easy to implement? #### Part B (6 Marks) a) Quick Sort 6. Explain the different types of
data structures with suitable examples. b) Merge Sort c) Selection Sort - 7. Describe the operations of a stack with proper diagrams. - 8. Differentiate between a singly linked list and a doubly linked list. List two applications of linked lists. d) Insertion Sort - 9. Explain in-order, pre-order, and post-order traversals of a binary tree with an example. - 10. What is hashing? Explain different types of hash functions with examples. #### Part C (12 Marks) - 11. Write the algorithm for inserting an element into a linear array and explain with an example. - 12. Write a Python program to convert an infix expression to a postfix expression. Explain each step with a stack simulation. - 13. Design and implement a singly linked list in Python. Include insert, delete, and traverse functions. - 14. Given the following binary tree, perform in-order, pre-order, and post-order traversals. Show all steps clearly. A / \ B C /\ /\ D EF G 15. Compare Quick Sort and Merge Sort in terms of time complexity, space usage, and performance. Dr. S. Immaculate Shyla Head of the Department Tomas Dr. S. Immaculate Shyla Course Instructor Thamas #### **Teaching Plan** Department : Artificial Intelligence and Data Science Class : II B. Sc Artificial Intelligence and Data Science Title of the Course: Core Course III: Skill Enhancement Course: Principles of Computer Architecture Semester : III Course Code : IU243SEC1 | Course Code | L T P S Credits | Inst. Hours | Total | Marks | | | | | | | |-------------|-----------------|-------------|-------|-------|---|---|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | IU243SEC1 | 1 | 1 | - | - | 2 | 2 | 30 | 25 | 75 | 100 | #### **Objectives** 1. To understand the core principles of computer architecture and organization. 2. To analyze instruction sets and control unit operations in modern processors. #### **Course Outcomes** | СО | Upon completion of this course, the students will be able to: | Cognitive level | |----|--|-----------------| | 1 | understand the basic structure and functionality of computer systems. | K1(R) & K2 (U) | | 2 | analyze the performance of different instruction set architectures and identify their impact on processing efficiency. | K3(A) | | 3 | applying pipelining and parallel processing techniques to improve computational performance. | K4(An) | | 4 | evaluate memory hierarchy strategies and propose solutions for optimizing data access. | K5(E) | | 5 | design simple processor architecture and simulate their functionality. | K6(C) | K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyze; K5- Evaluate; K6- Crea # Teaching plan Total Contact hours: 30 (Including lectures, assignments and tests) | Unit | Module | Topic | Teaching
Hours | Assess
ment
hours | Cognitive
level | Pedagogy | Student
Centric
Methods | E Resources | Assessment/
Evaluation
Methods | |------|-----------|---|-------------------|-------------------------|--------------------|--------------------------------------|-------------------------------------|---------------------------|--| | I | Introd | uction to Computer Arch | itecture | | | | | | | | | 1. | Introduction Computer registers, Computer Instruction codes | 1 | | K2(U) | Introductory session | Analogy Based
Learning | YouTube
lecture videos | Evaluation Through Questions. CIA I | | | 2. | Timing and control,
Instruction Cycle | 1 | 1 | K3(A) | Real-World
Analogy
Discussions | Problem-
Solving &
Reflection | Online notes | Quiz using
Slides
CIA I | | | 3. | Memory Reference
Instruction | 1 | | K1(R) | Lecture using
Chalk and talk | Conceptual
Foundation | PPT using
Nearpod | Quiz
CIA I | | | 4. | Input Output Interrupt,
Complete computer
description | 1 | | K1(R) | PPT | Interrupt
Roleplay
Simulation | Interactive
Notes | Experiments
CIA I | | | 5. | Design of basic computer | 1 | | K4(AN) | Demonstration | Build a
Flowchart | videos | Hands-on
Real-World
Applications.
CIA I | | II | Central P | rocessing Unit | | | | | | | | | | 1. | Introduction-General register organization | 1 | 1 | K2(U) | Lecture using
Chalk and talk | Scenario
Based
Learning | Class point
PPT | Evaluation
through short
test
CIA I | | | 2. | Stack organization | 1 | | K3(A) | Lecture with examples | Algorithm
Races | PPT | List some
examples of
searching
making ideas
CIA I | | | 3. | 3. Instruction formats | | | K3(A) | Lecture using videos | Case based
Learning | YouTube
videos | List some
examples of
searching
making ideas
CIA I | | | |-----|------------------------|--|---|---|--------|---|----------------------------------|-----------------------------------|---|--|--| | | 4. | Addressing Modes | 1 | | K6(C) | Logic
Explanations
with examples. | Algorithm
Races, | Interactive ppt | Create real time application examples using search techniques CIA I | | | | | 5. | Data transfer and manipulation, Program control | 1 | | K6(C) | Logic
Explanations
with examples. | Code
Completion
Activities | PPT | Create real
time
application
examples
using search
techniques
CIA I | | | | III | Combinational Circuits | | | | | | | | | | | | | 1. | Half Adder and Full
Adder
Flip Flops-SR flip flop | 1 | 1 | K2(U) | PPT | Concept Based
Learning | PPT using
Nearpod | Slip Test
CIA I | | | | | 2. | D Flip-Flop- J-K Flip-
Flop- T Flip-Flop | 1 | | K1(R) | Logic
Explanations | Concept Based
Learning | PPT | Create programs using flipflops CIA I | | | | | 3. | Sequential Circuits-
Flip-Flop input
equations, State Table-
State Diagram and
problems. | 1 | | K4(An) | Flipped
Classroom | Concept Based
Learning | Presentations
using
Nearpod | Practice
Exercises
CIA I | | | | | 4. | Digital Components: Integrated Circuits- Decoders-3-to-8-line decoder | 1 | | K3(A) | Blended
Learning, Code
Tracing | Code Puzzle
Solving | Interactive
PPT | MCQ Using
Nearpod
CIA II | | | | | 5. | Multiplexers: 4-to-1
line Multiplexer-
Demultiplexer | 1 | | K6(C) | Logic Explanations. | Code Tracing
Exercises | Class point | Hand on
Implementatio
n
CIA II | |----|----------|--|-------|---|-------|--|--|---------------------------|---| | IV | Memory | Hierarchy and Storage Sy | stems | | | | | | | | | 1. | Cache Memory-
Mapping Techniques | 1 | | K2(U) | Group Work &
Inquiry-Based
Tasks | Ethics & Interpretation | Interactive
PPT Videos | Interactive
Sessions.
CIA II | | | 2. | Replacement Policies- | 1 | | K3(A) | Error Analysis
& Feedback
Loops | Principal
Component
Analysis | PPT | Demonstration
of real-world
Applications.
CIA II | | | 3. | Virtual Memory and
Paging | 1 | 1 | K3(A) | Reflective Discussions, Visual Diagrams & Flow Models | Build-Your-
Own RL
Environment | YouTube
videos | Evaluation
through short
test
CIA II | | | 4. | Main Memory
Organization Secondary
Storage | 1 | | K5(E) | Tool-Focused Learning, Ethical Thinking & Real-World Application | DIY Object
Detection
Challenge | Notes | Practical
CIA II | | | 5. | RAID Levels- Memory
Access Optimization
Techniques. | 1 | | K2(U) | Critical Media
& Ethics
Discussions,
Roleplay &
Simulation | Data Labelling
& Sentiment
Sleuths | Interactive
PPT | Practical
CIA II | | V | Input/Ou | tput Systems and Interfac | ing | I | | | | | | | | 1. | Input/Output Systems and Interfacing | 1 | | K2(U) | Socratic
Seminars &
Debates | Design with
Ethics
Challenge | Classpoint
PPT | True/False
Assessment
CIA II | | | 2. | Interrupt Handling and
Direct Memory Access | 1 | | K3(A) | Design Thinking with Fairness | Bias Detective
Workshops | PPT | Evaluation through | | | (DMA)- | | | | Constraints | | | exercises
CIA II | |----|---|---|---|--------|--------------------------------|--|----------------------------------|---| | 3. | Buses: Structure,
Types, and Arbitration | 1 | 1 | K3(A) | Data Awareness
Activities | Data Awareness Scavenger Hunt | Online
Tutorials and
Notes | Evaluation
through short
test
CIA II | | 4. | Peripheral
Communication (PCI,
USB, SATA | 1 | | K4(An) | Simulation & Design Challenges | Future
Scenario
Design | Interactive
PPT | MCQ
CIA II | | 5. | Modern Trends in
Computer Architecture
(GPUs, TPUs, Quantum
Computing) | 1 | | K4(An) | Conceptual
Analogies | Simulation &
Sandbox
Exploration | YouTube
Lecture
Videos | GD.
CIA II | Activities (Em/En/SD): 1. To know about the computer architecture and its combinational circuit. 2. To understand about the various registers and flip flops. Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil Activities related to Cross Cutting Issues: Nil Assignment: 1. Addressing Modes 2. Input/Output Systems and Interfacing -Last date to submit 2-9-2025 Seminar Topics 1: Stack organization 2. Main Memory Organization
Secondary Storage Sample questions (minimum one question from each unit) #### Part A (1 Mark) 1. What is the purpose of cache memory? (K1-R, CO-1) - 2. In which addressing mode is the operand specified directly in the instruction? (K2-U, C0-2) - (a) Register (b)Immediate (c) Indirect (d) Indexed - 3. If the current output of a T flip-flop is 0 and T = 1, what will be the output after 3 clock pulses? (K2-U, CO-3) - (a)0 - (b) 1 (c) undetermined - (d) cannot be changed - 4. In associative mapping, how is a memory block located in the cache? (K5-E, CO-4) - (a) By index - (b) By tag comparison with all cache lines - (c) By hashing - (d) By offset - 5. Which type of bus allows multiple processors to share communication lines? (K4-An, CO-5) - (a) Serial bus (b) Shared bus (c) Hybrid bus (d) Dedicated bus #### Part B (6 Marks) - 6. Write about the instruction registers? (K1-R, CO-1) - 7. Explain addressing modes? (K2-U, CO-2) - 8. Differentiate full adder and half adder. (K2-U, CO-3) - 9. What is virtual memory with example? (K5-E, CO-4) - 10. Write about the structure of bus? (K4-An, CO-5) #### Part C (12 Marks) - 11. Write about Input Output interrupt in detail with example. (K2-U, CO-1) - 12. Explain stack organization with example? (K4-An, CO-2) - 13. Explain with example about SR Flip flop and T Flip flop? (K5-E, CO-3) - 14. What do you mean by virtual memory and paging? (K6-C, CO-4) - 15. Explain about modern trends in computer architecture? (K2-U, CO-5). Dr. S. Immaculate Shyla Head of the Department Dr. Sruthy B S Course Instructor